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R.S. Rivlin -
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Lehigh University, Bethlehem, Pa.

Abstract

The constitutive equations for materials with
memory developed by Green and Rivlin are discussed,
with particular emphasis on the physical assumptions
regarding material behavior which are implied by the

mathematical assumptions in the theory.
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1. Irtroduction

The charzcicristyc property of viscoelastic soi.uz which
distingu.shes them from pe.fectly ~jastic «¢i1ids is tae faci
that, it they are subjccteu to 3 dexorn tion vhich varic: with

time, the stress mc .>ur<r, at tme t , sav. depends not cniy

VI PO > A R (W MR

on the instantaneous value of ths defoimation gradicnts, but
also on the whole previaus his._o:y cf the dzformation g-~rd-
ients. In a series of papers Creen and Pivin (19%/, 126u)
and Green, Spencer and Rivlin (1959) have de¢veloped cuanstitu-
tive equatinns {or such vpatariu’s, in which the stress is ex-
pressed in terms of the deformation in the form of series of
multiple integrals. It is the object of this paper to recapitu-
late this development, with par+* cular emphasis on tun¢ physical
assumptions regarding the . ...jiJ ¢ . '.ich are implied by the
mazh:matical assump .ions made i. thc theory. Such z develop-
man- is perhaps timely in view of the extensive attempts in
recent years to represent the behavior of actual materials in
the form given by the theory.

In §2, we start with tie assumption that the Cauchy
stress is a functional of the deformation gradients for times
up to and including t and express the restrictions imposed
on the form of this dependence by the consideration that, if
the body and the force system applied to ;t, including
inertial forces, are simultaneously subjected to a time-
dependent rigid rotation, the stress field at time t is

correspondingly rotated by the amount of this rotation at




tise t . The fuv< ional dependence on the history of the
daformation grai.cn 5 vp to and including time t is thus
replaced, witk auy 3sired approximation, by functional
dependence ov the @ luced Cauchy strain (i.e., the Cauchy
strair less the 71 tensor). The nature of this dependence
can be further rest1 cted if the material has some symmetry,
but the explicict ¢el. rmination of the form of this restric-
tion will not he¢ wi- 1ssed here. Rather we shall be concerned
with the assumptions regarding the functional dependence of the
stress on the reducent Cauchy strain which enable us to obtéin
explicit represent-:.:ons.

Gicy . much of the apparent complexity of the theory, as
originally presented, stems from the tensor character of the
equations involved, we first discuss the simple case in which
only simple extension of a rod of the material under tensile
force is considered. The stress is then considered to be a
f nctional of the history of the fractional extension of the
rod up to and including time t . The assumption is made
that, for two extension histories, for which the extensions
at each instant of time are infinitesimally different, the
corresponding stresses at time t are infinitesimally differ-
ent. This assumption that the dependence of the stress on
the extension history is continuous, enables us to obtain,
with any desired approximation, representations for the stress
at time t as the sum of a series of multiple integrals in

the extension history. It is shown that the kernels in these
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multiple integrsls must necessarily be such as to yield the

property that the memory of the stress for extension history
is a fading memory - the stress forgets the extension history
in the distant enough past. This results from the continuity
assumption and from the assumption that, whatever the exten-
sion history, the stress does not hecome infinite at infinite
time.

It is pointed out that the basic assumption that the
stress at time t is a functional of the extension history
up t~ and including time t is strictly not broad enough to
accommodate the behavior of materials which have internal
friction, if deformations involving instantaneous changes of
the velocity gradient are allowed. In such cases the stress
in the rod at time t must be assumed to depend not only ¢n
the history of the extension up to and including t , but
also on the instantaneous values of the rate of extension at
time t .

Firally in §4, the various types of behavior considered
in §3, in the case of time-dependent simple extension of a rod,
are generalized to the case of arbitrary deformations of the

material.
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2. Basic theory

In this section, the principles underlying the continuum
mechanical theory of non-linear viscoelastic solids will be
briefly summarized. We start by delimiting in mathematical
terms the class of materials to which the theory is to apply.
This class is not the most general with which we shall be con-
cerned in this paper. However, it will serve to illustrate t.e
fundamental principles involved.

The deformation is described by specifying the vector
position x(1) of a generic particle of the body at time 7 ,
with respect to & fixed origin, as a functicn of its vector
position X with respect to the sam: origin at some reference
time T , say, which is conveniently taken to be a time at

which the body is undeformed. Thus,
x(1) = x(X,1) . (z.1)
The displacement vector u(t), defined by

u(r) = x(1) - X, (2.2)

may also be regarded as a function of X and Tt , thus

u(t) = u(X,7) . (2.3)

In termé of the components xp(r), XA and up(r)
ot x(1), X and u(t) respectively, in a rectangular
cartesian coordinate system x , the relation (2.1) may be

written

Xp(r) = Xp(XA,T) (2.4)
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and the relation (2.3) may be written

up(t) = up(XA,t) . (2.5)

It is evident that if the nine deformation grad-
ients axp(r)/axA are specified at a point, then the amount
by which any linear element at that point is stretched is
determined. For brevity, we use the so-called comma notation,
in which LA denotes the operator a/axA . The nine defor-

mation gradients axp(r)/axA are then written xp’A(r)

We shall be concerned with materials in which the stress
oij(t) at a generic particle, measured at time t, which, for
brevity, will b~ denoted oij , may depend on th¢ history of
the deformation gradients Xp’A(T) at that particle for ail
times from 1 = - to t . Thus, unlike the situation
which exists in an elastic material, in which the stress at
time t 1is determined 'miquely by the deformation gradients
at time t , in a viscoelastic material the stress at time t
"remembers' the deformation gradients at all previous times
and the material is said to possess "memory'". We can express

this physical idea in a mathematical statemeni - the

constitutive assumption for the material - that the stress

O35 at time t 1is a tensor-valued functional of the deforma-
tion gradient history xp A(T) for 1= - to t, thus
t
- r
olj FlJlx}’),A(T)] . (2-6)

T: -0
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This means simply that if the dependence of xp,A(T) on T
is known for a generic particle, then the stress at that
particle, at time t, is determined.
We recall that, in classical elasticity theory, if we

make the constitutive assumption that the stress at time t
depends on the values of the nine displacement gradients
aui/axj at time t, it is shown that it must in fact do so
through the six infinitesimal strain comporents e.

ij
defined by
ou. ou.
'Y s S
®ij z(axj * ax.) ’ (z.7)

The question arises - are there any corresponding restric-

tions which, in the case of the constitutive assumption

(2.6) for a non-linear viscoelastic material, can be placed

on the manner in which oij depends on the deformation grad-
ient history? That such restrictions do, in fact, exist

follows from a consideration somewhat similar to (hat used in
classical elasticity theory. We consider that the body, to-
gether with the force system associated with it,including iner-
tial forces, is subjected to a time-dependent rigid rotation. The
stress field at time t, referred to the system x, differs from
that which obtains ip the absence of the superposed rotation,only
to the extent that it undergoes a rotation, the amount of which
is that of the superposed rotation at time t. From this
consideration, it follows, by a purely mathematical argument,
that the dependence of o;; on the deformation gradient

J
history must be of the following form
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t
Oij = xi,P xj,Q FPQ [EAB(T)] , (2.8)
where EAB(T) is defined by
BAB(T) = xk,A(T)xk,B(T) - GAB , (2.9)

and the abbreviation X; p is used for the deformation
gradients xi,P(t) at time t. The nine quantities EAB(T)
are called the components of the reduced Cauchy strain ten-
sor at time Tt and we note that EAB(T) = EBA(T). Accord-
ingly, only six of the quantities EAB(T) are independent.
Thus, in passing from (2.6) to (2.8), we have replaced arbit-
rary dependence of Uij on the nine functions XP’A(T) by
arbitrary dependence on the six independent components of the
reduced Cauchy strain.

So far we have made no assumption regarding the symmetry
of the material. We recall that in classical elasticity, if
the mate 14l possesses some symmetry, restrictions can be
placed on the manner in which the stress depends on the
infinitesimal strain components. In the case when the material
is isotropic these restrictions become particularly strong.

In principle, we can, by similar considerations, place
restrictions on the form of the tensor-valued functional
FPQ in (2.8) if the non-linear viscoelastic material has some
symmetry. It emerges that the functional FPQ must satisfy
the condition

t t
FPQ[EAxB(T)] = aPMaQN FMNrEAB(T)] ’ (2.10)

T=-0 T=-®



wvhere

EAB(T) = agpanEa(t) , (2.11)

for all M belonging to the group of transformations
describing the symmetry of the material. In the case when
the material is i<otropic, this group is the rotation group,
so that, for an isotropic viscoelastic material, the tensor-
valued functional FAB must satisfy the condition (2.10)
for all rotations AN - This implicit restriction on the
form of FAB can be made explicit for any specified material
symmetry by a method developed by Green and Rivlin (1957) and
Wineman and Pipkin (1964). However, we shall not pursue this
here.

If the material considered is incompressible, specifica-
tion of the deformation gradient history does not determine
the stress completely, since the superposition on any force
system of a hydrcstatic pressure does not alter the deforma-
tion. Accordingly, the constitutive assumption (2.6) must be

replaced by

t

oij = Fij[xp,A(T)] - pdij ’ (2.12)

=-m

where p is undetermined if the deformation gradient
history is specified. From this constitutive assumption

the constitutive equation

t
955 = %i,p%5,q FrolEas(T)] - P8y (2.13)

=-00

follows, replacing (2.8,. At the same time, the fact that,




in an incompressible material, the volume of a material
element must remain unchanged during deformation, imposes on

the reduced Cauchy strain the restriction

det IEAB(t) + GABI =1, (2.14)

There is one further restriction which can be placed on
the constitutive equation (2.8) or (2.13) from considerations
of a very general character. This involves the concept of a
hereditary material as one which remains unchanged in proper-
ties so long as it rests undeformed. For such a material a
shift in time. by an amount t0 y <dy, of the deformation
history, will shift the depend-nce of stress vs. time curve
by an equal amount ty parallel to the time axis.

In the remainder of this paper, we shall restrict our-

selves to hereditary materials.
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3. Non-linear constitutive equations

In §2 we have obtained certiain restrictions which must
be imposed on the manner in which the Cauchy stress depends
on the deformation gradient hictory. These are expressed

by equation (2.8) in which, if the material possesses some

~

symmetry, the tensor-valued functional FPQ must satisfy the
equation (2.10).

In order to obtain more explicit forms for the constitu-
tive equation, which reflect physically non-pathological
behavior on the part of the material described, various rep-
resentations of the functional FPQ in terms of series of
multiple integrals have been developed. Green and Rivlin
(1957, 1960) and Green, Rivlin and Spencer (1959) considered
materials in which infinitesimal changes in the deformation
history result in infinitesimal changes in the stress at
time t. They showed that a sequence of approximations to
FPQ in the form of series of multiple integrals can be con-
structed which tend, in the limit, to qu. In order to
highlight the physical content of this development, free from
the mathematical complications which arise from the tensorial
character of the constitutive equations, we will discuss it
in the context of time-dependent simple extension of a rod.

Accordingly, let o be the stress at time t which res-
ults from a time-dependent fractional extension e(1). Then,
since o is determined if e(t) 1is specified for -w<1<t

we may say that o is a functional of e(x), thus:
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t
o= F [e(1)] . (3.1)
T=-00
It is convenient for the purposes of our discussion to re-
place the time <t by a time-like variable s defined by

s = 2 (3.2)

(t~1’+1)p

where p is positive. Then, for a specified t, the
extension may be regarded ;; a function of s rather than
of 1 . Noting that when 1 = - » » =0 and when T = t,
s =1, we may re-write (3.1), for a specified t, in the

form

a
"
e

[e(s);t], (3.3)

S

o being a functional of e(s) and an ordinary function of
t. For hereditary materials, we may omit the dependence of

¢ on t and we then have

le(s)] . (3.4)

S

Q
"
Tt
o

Now, suppose that e(s) can be represented by a Fourier

series (see §5) thus

it 8

e(s) = Ancos n lls , (3.5)

n=0
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where
1

2] e(s)cos nlls ds ,

b
"

0

1
0 f e(s)ds ,
0

The condition, wnder which the representation (3.5) for

(3.6)

>
i

e(s) is valid, is that e(s) have bounded variation in
the range s = 0, 1 . If this condition is satisfied, then
the sum of the series (3.5) gives the value of e(s) at all
points of the interval s = 0, 1 except possibly at points
of discontinuity. Accordingly, if we assume that e(s) is
a continuous function of s, then, if the coefficients
Ao, Al"" in the Fourier series (3.5) are specified, the
value of e(s) is determined at all points of the interval
s =0, 1 and o may be regarded as a function of AO’Al""’
rather than as a function of e(s).

We now suppose that in (3.4), o is a continuous

]
functional of e(s) ; 1i.e., an infinitesimal change

* More precisely, if el(s) and e2(s) are two extension
histories, and 04 and o, are the corresponding values
of stress at time t, then for ¢ > 0 , there exists a

value of &8 > 0 , such that

Iol-c2| < e

provided that

max lel(s) - e2(s)| < 8
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in e(s) results in an infinitesimal change in o . Then,

¢ may be regarded as a continuous function of Ays Agye-e .
To some degree of approximation, we may regard ¢ as a
continuous function of the first N + 1 Fourier coefficients
AO’ Al,..., AN . This approximation may be made as close as
we please by taking N sufficiently large. We denote by oy
such an approximation to o . Now, from Weierstrass's
theorem, it follows that we can approximate oy 3s closely
as we please by a polynomial in Ao, Al,..., A.N . According-
ly, we can approximate o with any desired accuracy by a
polynomial in A,, Al,..., AN . We note from (3.6) that the
product of r , say, A's is an T-tuple integral and that the
kernel in this integral is a continuous function of its argu-

ments. For example ,

1l p,1
A1A2 = 4ff cosIIslcos 21[52 e(sl)e(s?_)dslds2 . (3.7)
0 0

Accordingly, o may be approximated to any desired accuracy

by the sum of a number of multipie integrals, thus

1 1
o = ﬁff fu(sl,sa,...,su)e(sl)e(sa)...e(su)
0 0

dsldse...dsu = g(say), (3.8)

where u =0, 1, 2,... , and the kernels in the multiple

integrals are continuous functions of S15 Spseees su .
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The term in (3.8), which corresponds to u =0, is a
constant. This may be taken to be zero, if we assume that
the stress is zero for zero strain history (i.e.,o =0 when
e(s)=0). The result (3.8) is that obtained from the theory
of Green and Rivlin (1957), by specializing it to the case
of simple extension of a rod.

Using (3.2), we can rewrite the expressions (3.6) for

t
1
A =2 ———-9—-——e('t)cos—-n—-———— dt ,
n f (t-1+1)**1 (t-1+1)°
3 (3.9)
¢ )
A, = e(r)dr .
v f (t-1+1)P*]
Correspondingly, the approximate expression for o in
(3.8) may be rewritten as
t.-
O~ 0 = if fu(rl,tz,...,ru)
e (3.10)

e(tl)e(Ta)...e(ru)dTldrz...dru ,

where

u
) fu(sl,sz,...,su)

o (T,,T p000,T.) =
w12 v [(t-rl+1)(t-12+1)...(t-1u+1)]°+1

(3.11)

Since fu(sl’s2""’su) is a bounded function of

S. ,S

125 ...,su , and hence of 7 T Ty it follows

l ,12’110,
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that ;;(11,12,...,rv) becomes vanishingly small as any of

the variables Tys TpseeesTy tends to -«. This implies

that the material has fading memory in the usual sense that,

as t- 1+~ , the effect on ¢ of the extension, in a

finite time interval about time 7T , becomes vanishingly small.
From a purely mathematical point of view, if e(s)

possesses one or more discontinuities in the interval s = 0,1,

then in order to determine e(s) at all points of this inter-

val, we must specify, not only the values of thc Fourier co-

efficients given by (3.6), but also the values of e(s) at

the various values of s at which the discontinuities occur.

Let us suppose that discontinuities occur at s = SA(A=1,2,...,v)

and let N e(SA) . Then, if o 1is a continuous functional
of e(s) , we may regard it as a continuous function of

AO’ Al,... and of ex(x=1,2,...,v) , the nature of this

function depending on the values S, of s at which the dis-

A
continuities occur. Approximate expressions o for ¢ may
then b. obtained in the form (3.8} , where fu is also a
function of €, and SA , as well as of 51,52,..,,5u .

The term corresponding to u = 0 is now a function of

e and SA .

A
In considering the applicability of this conclusion to

real materials, it is well to bear in mind that discontinuous

changes in the extension cannot in fact be produced. The

importance of consid:cring a discontinuous change in e(s) at

time s = Sl , say, resides only in the fact that it provides
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an idealized model for a very rapid, but continuous, change
in the value of e(s) in the interval Sl- €, Sl+ € ,
where € 1is small. Consequently, we may, in general, omit
consideration of discontinuities in e(s). “n exception
arises when this discontinuity occurs at the instant at which
the stress is measured, i.e., at s =1 . 1In order to accommo-
date perfectly elastic materials and materials exhibiting
instantaneous elasticity within the framework of the theory,
we must then include, in the expression for o , explicit
dependence on the instantaneous value e of e(s) at s = 1.
Approximate expressions o for ¢ may then be obtained in
the form (3.8), where fu is a function of e , as well as of
Sys SpseesSy - The term corresponding to u =0 is now a
function of e . This result is essentially that obtained from
the theory of Green, Rivlin and Spencer (1959), by specializ-
ing it to the case of simple extension of a rod.

It is perhaps worth-while to underline the fact that,
whether or not the f's depend on e , the approximation to
o represented by (3.8) is of the following type. If € is
any specified positive quantity, we can construct an approxi-

mation ¢ , say, to o of the form (3.8), such that

lo-5] < ¢ (3.12)

for all extension histories e(s) which have bounded

variation.
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The kerrels occuring in the exprescion for ¢ cannot
be uniquely determined. We can, however, construct a sequence
of approximations of the form (3.8), corresponding to smaller
and smaller € , which tends in the limit tr o . Corres-
ponding kernels in this sequence do not necessarily tend to a

limit so that we cannot say that ¢ may, without error, be

represented by an expression of a form similar to that in -
(3.8). The absolute error involved in approximating o by

¢ may, however, be made as smii’ as we please. In the neigh-

borhood vf o = 0 , the percentage error may then be large.

It is, however, perfectly safe 0 use a representation
for o of the form (3.8),provided that we are concerned only
with changes of ¢ of magnitude much greater than € . Since
€ may be made as small as we please, it might, at first sight,
appear that this does not impose a meuningful restriction on
the use of the representation (3.8). Let us therefore consid-
er an example in which this might, in fact, impose a meaning-
ful restriction. Suppose we consider extension histories
ae(s) , with e zero, where a may be made as small as we
please. For small enough o« , and taking f°= 0 , we may

approxirate E by the first term in the series (3.8) thus

1
o =af fl(sl)e(sl)dsl . (3.13)
0

This approximation becomes increasingly good as as «
decreases. However, regarded as an approximation to o ,

the expression on the right-hand side of (3.13) has the



limitation that o only approximates o with absolute error
less than € . It may be that, in order for (3.13) to pro-
vide a good approximation to o , the value of a must be so
decreased that the stress is comparable with ¢ . The fact
that ¢ may be made as small as we please does not save us
from this limitation, since choice of a lower value of ¢
requires a new approximate representation of the form (3.8)
and with this we may be driven to lower values of a and
hence of the stress.

If, however, ¢ may be expressed exactly in the form
(3.8), then, for sufficiently small values of a , we may
agpproximate o by the expression (3.13) and, for somewhat

larger values, by

1 > 1r1
o= u] fl(sl)e(sl)dsl + af ] fz(sl,sz)
0o

0

e(sl)e(sz)dslds2 ’ (3.14)

and so on. In this way, we obtain a hierarchy of expressions
for o , valid over larger and larger ranges of the extension
prior to time t . This is, of course, also true if o can
be approximated by an expression of the form (3.8), with an
error which is of degree greater than u , say, in the exten-
sion. Of course, whether or not one of the approximations
has significant value in the study of a particular material,

to which it applies in principle, will depend on whether the

range of extensions for which jt is valid is a range over

which experiments can be carried out with reasonable accuracy.
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Coleman and Noll (1960) have obtained n successive
approximstions essentially of the forms (3.13) and (3.14)
by assuming that the functional F in (3.3) is Fréchet
differentiable n times about the zero history (i.e., the
history e(s) = 0 , 0<s<l). Their argument is basically
circular in that the definition of nth order Fréchet
differentiability is that the functional F shall be ex-
pressible as the sum of homogeneous functionals of degrees
1, 2,...,n in e(s) , with a resicue of degree greater
than n in e(s) .

The discussion has, so far, been based on the assumption
that the stress at time t is a continuous functional of the
extension history e(tr) for - = < t<t . It is evident that
this is not necessarily an appropriate assumption for many of
the materials with which we are concerned. For exaﬁple, let
us consider two deformations in both of which the exteansion
is maintained at zero up to and including time t . In one
of these, we maintain the extension zero after time t , while
in the other the rate of extension is changed discoatinuously
at time t from zero to a finite value. In many materials
(e.g., in Newtonian fluids) the stress at time t will be
quite differeht in the two cases.

In order to accommodate such materials in the framework
of our mathematics, we may take our constitutive assumption
in the following form : the stress is a functional of e(1)
up to and including time t and an ordinary function of

e (the rate of extension at time t ) , thus :

o =F [e(r) ; é] . (3.15)




Generalizing this concept to accommodate materials for which

discontinuous changes at time t in the higher time deriva-
tives € , €,... of the extension affect the stress at time
t , we may make our initial constitutive assumption in the
form : the stress at time t is a functional of e(t) in
the interval - « < 1 < t and an ordinary function of

é 9 é’..., thus

o= F [e(1) ; €5 65000 ] . (3.16)

This is esentially the constitutive assumption used by
Green and Rivlin (1960), specialized to the case of simple
extension of a rod.

Alternatively, we could accommodate such constitutive
assumptions in the single assumption that the stress o at

time t 1is given by
t+e

o= LY F [e(m)], (3.17)
e+0 T=-w

for small positive ¢ , i.e., stress at time t is the

limit as e + 0 of a functional of e(t) over the range

-w<t<t+e, Tosee this we note that

. t+e
e =- Lt §'(t-t)e(t)dr ,

e+0

- (3.18)

" t t+e
e = L 8" (t-t)e(r)dt , etc.,

e+0

where 6( ) denotes the Dirac delta function and &'( )

denotes its derivative. It should be noted that even if,




o 2

i e S il i e ot e B Sl - o Sl s A g 1 S o

- 22 -

in (3.15) and (3.16), o is a continuous functional of

e(t) and a continuous function of the instantaneous values
of the time derivatives of e at time t , the functional
dependence on e(1) expressed by (3.17) is not, in general,
continuous.

0f course, if we limit ourselves to deforma;ions in
which the time derivatives of e(t) are continuous at t ,
then the constitutive assumptions (3.15) and (3.16) can be
replaced by (3.1).

Approximations to o in the form of series of multiple
integrals may be made in the cases when o 1is given by
(3.15) or (3.16). The approximation takes the form (3.10),
with the kernels dependent on e in the case (3.15) and on
e , 8,... in the case (3.16).

It should be appreciated, in interpreting the above
remarks, that if the "slope" of e(t) vs. T changes dis-
continuously at time t , then scrictly its time derivative
at time t does not exist. By e we mean the right-hand
derivative of e(t) at time t . This is in accord with
the usual convention in mechanics when we apply the Navier-
Stokes equation, say, to situations in which the rate of

deformation changes discontinuously at time ¢t .
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4. Gemeralization to arbitrary deformations

In the previous section, we have attempted to show
how mathematical expression may be given to a variety of
possible types of mechanical behavior which may be exhibited
by viscoelastic materials. We have done this in the rela-
tively simple context of simple extension.

For each type of behavior we may obtain analogous
equations which are valid for deformations of a general
character. Thus, if we take our initial constitutive assump-
tion in the form (2.6), we have seen that the Cauchy stress
must necessarily be expressible in the form (2.8). Replacing
the time Tt by the time-like variable s , defined by
(3.2), we see that the stress aij , referred to a rectangu-

lar Cartesian system x , must be expressible in the form

1
%35 = *i,p¥j,Q FPQ [EPQ(S)] ’ (4.1)
s=0
where EPQ(S) is the reduced Cauchy stress at time s .
This can be re-written more succinctly in matrix notation,

thus :

[y W )

[E(s)IET , (4.2)

c = F
- ¥ 0

S
where
o= |]o

0 13” , F = “FiA” = “xi,Ail » E(s) = ”EAB(S)H

(4.3)
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and fT denote:c the transpose of F.
We now suppose that E(s) can be rerresented by a

Fourier series thus

E(s) = ] A, cos nlls , (4.4)
=z nzo ~

where én is given by

1
‘ﬁn Zf §(s) cos nlls ds (n>1)
0

1
g - [ pees s
0

i.e., each of the compoaents of the tensor E(s) can be

(4.5)

>
L}

expressed as a Fourier series. This is possible under the
same conditions as apply in our discussior of the case of
simple extension. Each of the componcats of E(s) must
have bounded variation in the interval [0,1]. Paralleling
the discussion in §2, we assume that each ot the compon-
ents of g(s) is continuous everywhere, except possibly at
s =1 . Then, in order to vepresent §(s) over the
complete range s = [0,1] , we must specify not only the
coefficients én in (4.4), but also the value E of §(s)
at s = 1.

The tensor f in (4.2) is, of course, a tensor-valued

functional and we suppose that it is such that infinitesimal
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changes in the components of E(s) 1lead only to infinitesi-
mal changes in the components of F . The tensor-valued
functional F is then said to be a continuous functional of
the tensor E(s) . Analogously with the case of simple exten-
sion, we may approximate each of the components of F to any

desired accuracy by a polynomial in the components of the

tensors E and én . Thus, each of the compunents FPQ of

f may be expressed, with any desired accuracy, in the form

(n,)

@) @)
pQ > L %A B....AB 2B
u 171" " Tp 171

A H
1\232... AUBH ’

YIS/ "

F A

(4.6)

; = -FPQ (say) ,

where, for specified n, Agg) are the components of

A

n also n,, n take integral values and the a's

2,..-
are functions (or, if we like, polynomial functions) of the
components of E .

Using (4.5), we may rewrite (4.6) in the form

1 1
Fra ~ F o = z‘[ f f (s,y...5.)
i I S 0 A PQA,B, ...A B 1 u

E (s,)...E (s.)ds....ds_, 4.7
AlBl 1 AuBu Y 1 U

where the kernels prAlB "AuBu are continuous functions

S and functions (or polynomial functions) of

of s y

l,o'l

the components EAB of E .
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Using (3.2), we can, of course, re-write (4.7) as

t t
FPQ =~ FPQ = E] ...f TPQAIB]_' _Aunu(‘l'l,...,‘l'u)

E (t,)...E (t.)dx,...dt_ , (4.8)
AlBl 1 AuBu 1 B

where

o' fp0A.B....A B
r - 171" " uwyp (4.9)
R e R (e T e V) e

If the material considered has some symmetry, the
functional F must satisfy the condition (2.10). In
approximating F by f , to any desired accuracy, this
can be done by an expression of the form (4.7) which satis-

fies the restriction (2.10) imposed by material symmetry.

We can develop constitutive equations for arbitrary

deformations corresponding to the simple extensional case

presented in (3.16). We start with the constitutive assump-

tion that the Cauchy stress components at time t are

Raii * Rkt A A SR LT SR Ll AR Al S0

functicnals of the histories of the deformation gradients

ki Ay

X, alt) for - » <1 <t and functions of the velocity

?

gradients X , acceleration gradients X » and so on,
P,A P,sA

at time t . Thus,

oij = Fij[xp,A(T) , xp,A , xp,A yooo] (4.10)

o
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Paralleling the passage from (2.6) to (2.8), we reach the

conciusion, in tkis case, that the stress must be express-

ible in the form

dE d°E
2%5,0"rolEs (™D 5 —& dtﬁ_“’ seerl - (4.11)

fnds
Sds
-t

Using the notation (4.3), we can, of cours~, rewrite

(4.10) as

Q‘N
ten

b JET (4.12)

& &

¢ = FFIEGS) 5

.

(-9

(ad
N

If the dependence of FPQ on EAB(T) is continuous,
then we can approximate FPQ with any desired accuracy by
a series of multiple integrals in the form (4.8), the ker-

nels now being functions of the components of the reduced

Cauchy strain and its time derivatives at time t . If the
dependence of Fpo on E , dE,p/dt daEAB/dta,... is
continuous, then the dependence of the kernels on these may
be taken as polynomial, with any desired accuracy.

Just as in the previous cases discussed, if the mater-
ial considered has some symmetry, the tensor-valued
functional in (4.10) must satisfy the restrictions implied

by (2.10).
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S. Appendix
In order to arrive at the Fourier representation
(3.5) for e(s) , we proceed in the following manner.

We first form a function e(s) given by

E(S) e(s) s [o,1] ,

(5.1)

e(-s) s = [-1,0] .

e(s)

e(s) is thus an even function of s , defined in the.
range [-1,1] by (5.1).

We now define e(s) , not just for s = [-1,1] ,
but for all values of s , as a periodic function with
periodicity 2, which is given by (5.1) in the range

[-1.1] . We express this as a cosine Fourier series thus,

e(s) = ¥ A_cos nlis , (5.2)
n=0

where, using the first of equations (5.1) ,

1 1
A =f e(s) cos nlls ds = Zf e(s) cos nlls ds (n>1) ,
-1 0

1 1
f e(s)ds =f e(s)ds .
-1 0

In view of the first of equations (5.1), we obtain (3.5)

(5.3)

p-J
"
o]
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